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LElTER TO THE EDlTOR 

On the integrability of Schamel’s modified Korteweg-de h i e s  
equation 

Mark W Coffey 
Ames LabOratory-US DOE and Depanment of Physics. Iowa State University. Ames, 
lA 5W11, USA 

.RCCCNCd 26 April 1991 

Abstract A recenl suggestion of integrability of Schamel’s modified Karteweg-de .Vries 
equalion for ion acoustic waves in a twocomponent plasma is discussed. Various argu- 
menu, including ones based on the lmncated Painlev6 expansion, are pmenled which 
suppon lhe Clistence of special slmcture far this equation. Hawever, the evidence for 
complete integrability of Schamel’s equation ir no1 yet conclusive. 

Recently a form of the modified Korteweg-de Vries (mKdV) equation with three halves 
degree of nonlinearity has received attention [l] from the point of view of Painlevk 
analysis (e.g., [24. In [l] Xiao obtained results with the use of the reduced or 
Kruskal ansatz [4,6] for the singularity manifold +(z, 1 )  = z + ~ ( t )  and expansion 
coefficients V. ( I, t )  = (t), j = 0, 1 , . . . ,CO. For the case of Schamel’s mKdV 
equation (7-4 

16ut + u=.Dz + 30~”~u, = 0 (1) 

Xiao investigated the equation 

16q2qt + 6q2 + gqq,q,, + qZq.,, + 30q4q, = 0 (2) 

which results from the change of variable U = q4, showing that compatible reso- 
nances occur at j = -1,6, and 10 (10,261. In this letter we present a simpler 
nonlinear transformation with which to study generalized mKdV equations of the form 
considered by Xiao, using it as a starting point for a Painlevk analysis, and discuss 
several questions posed by his analysis. We also mention the Hamiltonian formalism 
for Schamel’s equation and present a limited number of corresponding conservation 
laws. We tind aspects of special structure including a candidate Miura map, Bticklund 
transformation, and a Lax pair which may bear further investigation. However, con- 
trary to the implied conclusion of [1], the evidence for complete integrability of 
Schamel’s equation is not yet conclusive. 

Equation (1) arises in plasma physics in the study of ion acoustic solitons when 
electron trapping is present (e.g. (9,111). Equation (1) governs the electrostatic po- 
tential for a certain electron distribution in velocity space [9]. Schamel’s equation also 
arises in condensed matter physics in the study of the thermal conductivity of certain 
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(model) solids. Equation (1) occurs in describing phonons for a one-dimensional non- 
linear lattice when the interparticle force includes a term proportional to the three- 
halves power of the displacement [12]. In this setting, Schamel's equation follows 
for a derivative of the displacement in a continuum approximation with a semichar- 
acteristic variable-stretching transformation [12]. As pointed out by Schamel [7,8], 
(I) possesses a stronger nonlinearity than the usual Kdv equation in that the sin- 
gle soliton solution has a smaller width and higher velocity. An explicit pulse-type 
(sech4) soliton solution of Schamel's equation has been found by several authors 17- 
9,13-14]. In addition, a generalized mv equation for which (l)-is a special case has 
been studied in a variety of mathematical physics contexts. A few references in this 
regard are [14,16] for general properties and [12,15,17,18] for particular solutions 
and physical applications. Related KdV-like equations and their physical origins are 
discussed in [19,20]. (None of these instances of Schamel's equation or generalized 
KdV equation are mentioned in [l].) 

We first make some observations concerning the Painlev6 analysis performed by 
Xiao [l] for the equation 

. 

n2u1 + uIID + ( n  + l ) ( n  + 2)u2/"uS = o (3) 

which by taking U = 0" becomes 

n2q2q, +(n- l ) (n-2)d ,+3(n- l )qq,q , ,+q2q, , ,+(n+l ) (n+2)q4q,  = 0. 
(4) 

Equation (3) can also be written in potential form with B = U,, 

n%, +e,,, + n(n + i)e:/"+l = c (5)  

where e is a constant of integration. A guarantee of the non-negativity of the solution 
of (3) for even values of n was not given in [l]. In the following we assume that 
such non-negative solutions exist under not too restrictive conditions on the initial 
data and boundary conditions. 

Equation (4) has polynomial nonlinearity of degree three except for the last 
term of degree five. (The case n = 4 is Schamel's equation.) The importance of 
the truncated Painlev.5 expansion in yielding information such as Bscklund transfor- 
mations, Miura maps, Lax pairs, Huota's bilinear representation, and special and 
rational solutions is well-known (e.g., [2-5,221). The singularity exponent 01 being 
-1 for (4), the Painleve expansion truncated at the constant ievei becomes simpiy 
qT(z,t) = Vo(z,t)/4(z,t j  + y(z , t ) .  (The T subscript on q shall denote the 
truncated Painlev.5 series throughout this letter.) In the case of the reduced ansatz, 
V, = *iq$= = *i and Vl = 0 [l]. Although Vl is a (trivial) solution of equation 
(4), the form q,. = i / 4  with q5= = 1 is insufficient to bilinearize (4), leading Only to 
the relation dt  = . O .  The solution thus found (in the context of the reduced ansatz) 
is .(zj = (&ijn/($ + =,,jn, where z,, is a constant, a speciai case of tne soiution 
obtained from (3) by direct integration with ut = 0. Now for a truncated expansion, 
the reduced form of the singularity manifold is usually nol assumed [4]. Therefore it 
is of interest to remove the restriction that q5= = 1. As verified by direct calculation, 
the use of q,.(z,t) = i (d/dz)  In 4(z, t )  = i+=/$ results in a fourth-order equation 
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for Q each term of which has a sixth degree nonlinearity: 

n Q Q,(QQ,i + Q=Qi) +(n- l)(n- 2)Q3Q3, +3(n- OQ'Q, d,,Q,,, + Q3Q2Q,,,, 
+(zn+l)(n+l)QQ,,Q:-3n Q Q,QZ,-(3n+l)Q2Q:Q,,, = 0. 

(6)  

a a a  
2 2 2 2  

Although simple exponential functions solve equation (6) ,  they are of little interest, 
as they result in a trivial pr. However, in light of the known single solitary wave 
solution for general n (e.g., [14,15,17]), presumably useful hyperbolic trigonometric 
solution(s) exist of this sixth-degree equation for the singularity manifold function Q. 
In a sense, (6) represents a homogenization of the nonlinearity of (4). We stress, 
however, that the mathematical cost of this transformation is to increase the degree 
of nonlinearity rather than to decrease it, as would be expected in the case of a 
completely integrabie equation. in particular, for n = 4, (6) still has sixth degree of 
nonlinearity. Only if (6) can be suitably integrated will a bilinear equation follow, as 
expected if (2) were completely integrable like the KdV equation. 

Successful passage of the Painleve test as described by Weiss is considered a 
sufficient condition for complete integrability [3] (p 200). However, the nature of the 
singularity manifold itself needs to be examined. According to Weiss [3] (p 178) all 
movable singularity manifolds must be single-valued, whether characteristic or not. 

Now the transformation of (3) to (4) is unnecessarily complicated. The change of 
variable U = q"I2 [15] in (3) gives 

(This equation then has an explicit sech' solution.) An obvious advantage of (7) over 
(4) for general n is that (7) has quartic versus quintic highest degree nonlinearity. 
Furthermore, for n = 4 (the Schamel equation) the 4", term in (7) is absent and a 
factor of q can be cancelled throughout. The resulting equation, 

(8) .- "_ 2 
'0941 + %q,, + w,,. 4- J"q q2 = 6 ( n  =4tj 

has only cubic highest degree nonlinearity. 
The leading order singularity of (8) is found to be a = -2, as expected on 

the basis of Xiao's result. Developing a Painlev6 expansion in the form q ( z , t )  = 
Q-2(1,t)Cjm_0qj(r, t)~(3:, t)  shows that the resonances are unchanged, being at 
j = 6 and j = 10. The general nonlinear recursion relation (RR) for the expansion 
coefficients qi is a little too lengthy to give here. It gives qa = -62 (a real function 
in distinction to Vo), q1 = QrZ, 

w : 9 3  = 4 3  izz,  - 44,Q,,Q,,, + 3QL - 4 4 { 4 A Z  + 49,,&. (94 

Proceeding further with the use of the reduced ansatz Q, = 1, Qt = Gr ,  qj = qj (1) 
we have the RR 
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which gives [21] 

qo = -1  91 = 0 ~2 = - Q t l 3  93 = 0 (114 
44 = -$:I15 9s = W t t I 4 5  9.1 = -8$1*tt/45 (1 1b) 

(114 qa = [160$,,,, - 3$:]/2025 49 = s[-s$fd'tt + 45qs11/675. 

The resonances are compatible, i.e., the functions qs and ql0 are arbitrary in the 
Painlev6 expansion. Therefore (8) passes the Painlev6 test in the strong form: all 
resonances are at integer values and are compatible-in which sense the Schamel 
equation is partially integrable. However, the Painlev6 expansion truncated at the 
constant level, 

with the function q2 = 0 fails to bilinearize (8). An immediate difficulty can be seen 
in attemptingTo integrate the term with the time derivative with respect to z once. 
The transformation (12) for (8) is very like that for the Kdv equation (e.g., [2,3], [22] 
p 172). Without a means of integrating the resulting equation, it is not clear how 

Nonetheless, proceeding as for the KdV equation (3), we can find a singularity 
manifold equation which is bilinear in 4. This then leads us to a possible linearization 
of (8). By imposing the condition q3 = 0 we have the equation 

xuutd*s brmear representatbn ~~ be obiaii,eh ir, ihe .Usiia; .way, 

which can be integrated once to give 

4 4 A  - $42, + 4,d,,, = (14) 

where X is a constant. Using the Schwarzian derivative {+; z), the unique differential 
invariant of the Mabius group (e.g., [3]), (14) can be written as /' 
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We further have the relations 

where the latter can be viewed as a candidate Miura transformation. Equation (16b) 
is a Ricatti equation in the variable V + z z / + z ,  linearizable by the substitution 
V = 2az/v. This gives the linear Schrodinger equation 

(17) 1 - psz - q2v = 

which is part of a candidate Lax pair for (8). Here, v2 = +z plays the role of a 
squared eigenfunction with corresponding eigenvalue XI12 and q, is the potential in 
the associated scattering problem. The other part of the Lax pair is given by 

= ( i A  - 42) + +22,zv. (18) 

Equation (18) can be obtained by: solving for X from (16a) and setting the result 
equal to expression (U), differentiating with respect to z, and eliminating +I with the 
aid of (15). We have thus found a candidate Lax pair and Backlund transformation, 
(16), for (8). 

Using the compatibility condition vIII = vtzr, the candidate Lax pair (17), (18) 
provides the KdV equation for q , ( ~ , t ) :  4q,,, + q2,+.= + 12q2q,,, = 0. By using 
the singularity manifold equation (14), it is not difficult to show that the function V 
satisfies the mKdV equation 4 4  + V,,, - $V2V, = AV,. 

The linearizing substitution for + is expected to be + = v , / v 2  where ul. v2 
solve the Schr6dinger equation (17) (e.g., [3]). Yet these results are insufficient to 
show that (8) has N soliton solutions, in which sense Schamel's equation could be 
considered completely integrable. Among the items to be examined is the consistency 
of setting the higher-level qj's to zero, especially the conditions q4 = q5 = 0 and 
likewise for q, through qp  

The Schamel equation has at least three conservation laws and the candidate Lax 
pair opens the possibility of finding an infinite number, characteristic of completely 
integrable equations. One of these laws is equation (1) itself, written in the form 
16ut + Flz = 0 where the flux Fl = uzr + 2Ou3I2. Another conservation law 
is (8u2) ,  + F,, = 0 where the flux F, = -u',/2 + uuZI + 12u5I2. (These two 
conservation laws obviousiy extend for arbitrary n for the generalized KdV equation 
(3).) The first of these laws may be termed conservation of a momentum and the 
second conservation of an energy. 

Here we can only touch on the subject of the Hamiltonian structure for Schamel's 
equation. It may be pointed out that non-unique Lagrangian and Hamiltonian densi- 
ties for (1) exist. One possible Lagrangian density [17,19] for (1) is 

L = se,e, - e 3 2  + ae:I2 

x = e,n - L = 4 1 2  - au5I2 

(19) 

where 0 is a potential function, Os = U. The corresponding Hamiltonian density is 

(20) 
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where the canonical momentum density is Il = aC/a8, = 88,. The latter relation 
enables us to state that P = s Il d z  = 8 J-- U d z  is a total conserved momentum. 
The Hamiltonian is given by H = s-", 'H dz. By using the equation of motion (l), 
integrating by parts, and assuming that the first two spatial derivatives of U vanish at 
infinity, we find that 

00 

(u,u,, - 2 0 ~ ~ / ~ u , ) d x  = -u3 = 0 (21) 
d H  '," I, 

for solutions like the single soliton that either vanish or approach the same constant 
value at fco. Therefore the Hamiltonian H provides a third constant of the motion, 
with the corresponding conservation law being 71, + F,, = 0, where the flux 

F~ = + - 2 0 ~ 3 / 2 ~ , ,  + ~ O U ' / ~ U ~ ,  -  ZOO^^] . 
Like H ,  = 8 J:w u2dz, H represents a kind of total conserved energy. 

The three conservation laws that we have presented are direct consequences 
of Noether's theorem [23]. In particular, they follow from the invariance of the 
Lagrangian density with respect to translations of x, 1 ,  or 8. The quantities P and 
H are the generators of space and time translation and the coordinate 0 is cyclic 
[D]. The further application [24] of Lagrangian and variational techniques (using the 
action) and similarity reduction for Schamel's equation will not be presented here. 

For equations like KdV which have a Lax pair there exist two distinct Hamiltonian 
structures [U]. For Schamel's equation, the three densities n,  82, and 'H provide 
candidate Hamiltonians, but it is not clear if these lead to an infinite ladder structure 
[U]. A closely related topic is the existence of a Miura-type transformation for 
Schamel's equation to or from an equation possessing a Hamiltonian structure [25]. 

It is textbook knowledge [22] (p 263) that the generalized KdV equation 
ui + U,,, + f(u)u, = 0 has a scalar pseudopotential only when the function f 
is quadratic in U ,  which covers the known completely integrable KdV and mKdV cases. 
This result assumes that the pseudopotential depends on U and its spatial derivatives 
up to the second-order, which is usual for an equation of third-order in the space 
coordinate. The existence of a pseudopotential for Schamel's equation remains an 
open question. 

In summary, the Schamel equation (1) has some special structure associated with 
it, e.g., the existence of two arbitrary functions in a Painlev6 expansion, a possible 
Miura map, and Lax pair. These results provide evidence that Schamel's equation may 
be completely integrable. Currently it is not known for Schamel's equation if there 
exists an infinite number of conservation laws and a Hirota bilinear representation and 
associated multi-soliton solutions. The truncated Painlev6 expansion yields a Darboux 
transformation in the usual form. The appearance of the SchrOdinger equation (17) 
suggests that inverse scattering theory [22] may be applicable in some form. 

I thank W Hereman for stimulating discussions and the Colorado School of Mines 
Department of Mathematical and Computer Sciences for its hospitality during a 
recent Visit. Ames Laboratory is operated for the US Department of Energy by Iowa 
State University under Contract No W-7405-Eng-82. This work was supported by the 
Director for Energy Research, Office of Basic Energy Sciences. 
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Note added in p m f .  After the present paper was submitted an article by Ramani and Grammaticos I261 
appeared which comments on the Painlev6 analysis of Schamel's equation. 
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